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There is considered a problem of creep theory for ageing homogeneous linearly 
deformed bodies with growing slits and cavities. Only the stresses or displace- 
ments are given on the moving sections of the contour. It is assumed that the 
Poisson’s ratio is constant. Explicit representations are obtained from the stress- 
es, strains, and displacements of the creep theory problem in terms of the 
stresses, strains, and displacements of elastically instantaneous problems. In 

particular, it follows from these representations that for the problem under con- 
sideration the Voltena principle is invalid in the general case. The results 
obtained extend the known theorems of Arutiunian which are valid for a dom- 
ain with fixed boundaries [l-4]. The main results of the paper without the 
extension to the case of developing cavities were announced in [S]. 

1. Let a homogeneous isotropic linearly deformed body possessing the properties 
of ageing and creep occupy a three-dimensional domain Q (7) within which the 

volume forces f (x, z) = {ji (x, z)} and the forced strains Eiy (x,,‘r) are 
given. The Poisson’s ratio v is taken constant. 

The boundary S (7) of the domain Q (‘6) consists of four fixed sections Si (i 

= 1, 2, 3, 4), a quasistatically growing slit y (.c) with the initial position Y (to) 
and boundary SO (r) of a quasistatically growing cavity o (r) with initial position 

w (0 Here te > TO, tl > TO, ‘CD is the time of the beginning of the applicat- 

ion of the external effects, y (zi) c y (zs), 0 (‘3 C 0 (rs) if Tl < 3. The 
stress vector F (x, 7) = {Fi (x, I$}, is given on S, , the displacement vector 
U (x, T) = {U, (x, z)} on S, , the normal displacements u, (X, r) and the 

tangential stress vector F, (x, T) on Ss , and the normal stresses F, (x, T) and the 

tangential displacement vector UT (x, T) on s, . 
The Cauchy equations, equilibrium equations, and boundary conditions written 

for the time Z have the form 

aij (x,z> = 2-1 (ni, j (x, z, + uj,i (x, %))9 aij, j (Xv Z) + fi (Xv T) = 0 ('* ') 
xa-qz) 
%(x,z)= F(+), x&r; u(x,z)= U(x,z), XE& 
~(2, z) = Un(x, r), oz(x,~)= Fz(x,z), XES, 
%l(XJ) = Fn(XJ), Ut(% z)= U,(x,z), XESl 

here erj, uii are the strain and stress tensors, u = (2~) is the displacement 
field, n = {ni} is the external normal to the boundary S, U, = {Uijni} is the 
s&s vector on the area with normal to n; u,,, u,, are the normal components of 
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the displacement and stress vectors, uz, GT are the tangential displacement and 
stress vectors. The dependence between the strain and stress tensors has the form 

&ij(X, Z) = (I + v, [(I + L, (+)I - (1.2) 

V&j [(I + L) (%)I + EijO (X9 Z), X E f2 (t) 

Oij (Xv IT) ZZ s { [(l + N) (Eij - Eijo)] + 

6ij & I(r+w%k-41}r XEQ(T) 

19 = rp (x, 4, JQP = T (P(%E)W, E)@, 
To 

Here E (x, T) ss E (‘c) is the modulus of the elastically instantaneous strain&P (z, 
E) is the creep kernel, R (7, E) is the relaxation kernel. The kernels P (a, E) 

and R (‘C, g) are interrelated by the dependence 

R (1, t) f P (t, .t) = - i P (t, E) R (E, z)dg 
(1.3) 

t 

Here a version is examined in which the stresses are given on the edges y* (T) of the 
slit y (7) and on the boundary S, (r) of the cavity 0 (r) . In this case, (1.1) 

and (1.2) are supplemented by the boundary conditions 

(J,(x, z) = F’ (x, r), x E y* (z) (1.4) 

n.n(x,r) = F(x,Q, x=&(r) 

Let Ui* (X, T), Eij* (X, T), Uij* (x, T) denote the solution of the creep 

problem (1. 1), (1.2), (1.4). Let us designate the problem (1. l), (1.2). (1.4) for 

zero deformative effects as Problem lo, i, e., for eij” = 0, U = 0 on S,, U,, 
= 0 on S,, UT = 0 on S, , and problem (1. l), (1.2), ( 1.4) for zero exter- 

nal forces as Problem 2c, i. e., for fi = 0 in ~2, F = 0 on SI, F, = 0 on 

S3, F, = 0 on S,, F* = 0 on y*, F = 0 on Sk . We let pi*, eij*(‘), 

Oij 
*cl) and ui*(a), &ij*(“‘, oij*(“’ , respectively, denote the solutions of the probl- 

em l*, p. Evidently 

The purpose of this paper is to express the solutions of Problems l*, 2* in terms of 
the solutions of the elastically instantaneous problems in which eij (x, T) and CTij (x, 

‘r) are interrelated by the law of instantaneous elasticity 

eij (x7 t, = (I + V) 
‘ij CxT ‘1 

E ct) + %jo(X, r> (1.6) 
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Let ui’l)(x, z, Yfz)* 0 (7;)), ei.$(l)(x, %, Y (%)S @ (~)~,~~j~" (X, T, y (T), 
0 (Z)) denote the solution of the elastically instantaneous Problem 1 corresponding 

to the Problem 1.. It should satisfy Eqs. (1.1) and (1.6) for zero deformative effects, 
i.e., for 8ij” = 0 in s1,U = 0 on S,, U, = 0 on S3,Uz = 0 on S,, and 

conditions (1.4) on the moving part of the boundary, 
Let r#) (X, Z, Y (t), 0 (r)), %jc2’ (X, z, y (0, 63 (918 Gi$2) (X, z, y (4, 

w (t)) denote the solution of the elastically instaneous Problem 2 co~~ponding to 
the Problem p. It should satisfy Eqs. (1.1) and (1.6) for zero external forces, i. e., 
for fi = 0 in Q, F = 0 on Si, F, = 0 on S,, F, = 0 on S, and 
the following conditions on the moving sections of the boundary 

Gn(X,Z) I= 0, XEyj,(Q, XESo @) 
(1.7) 

T h e o r e m 1. The solution of Problem l* is representable in the form 

a;j(r’ (x, it) = o$;’ (x, t, y (t), 0 (t)) (1.8) 

e;p (x, 1) = elf’ (x, t, y(t), 0 (t)) + \ 8s;) (x, ?, y (z), 0 (%)I P (t, t) dt (1.9) 

To 

up (x, t) = up (x, t, y(t), 0 (t)) + \ up (x, z, y (T), 0 (Z)) P (t, 7) dz ( 1,lO) 
To 

Theorem 2. The solution of Problem 2, is representable in the form 

t q (x* % Y Of, 0 (0) @’ (x, t) = oly’ (x, 4 y (t), 0 @>) + E (t) 1 E (q 
R(t,z)dz (1.11) 

T# 

r.GC2) (x, t) = up (x, t, y (t), w(t)) + 

i u(;L’ (x, r, y (0, w(t)) R (4 4 & + 
To 

(1.13) 
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P I o o f o f T h e o I: e m 1. Let us confirm that the functions Gil* f 
% s*(%), r&*(l) satisfy Eqs. (1. l), (1.2). (1.4) of the creep problem in the case of zero 
deformative effects. 

By the definition of the elastically instantaneous solution and by virtue of (1.8). 
the stresses oij*(r) satisfy the equilibrium equations and the stress boundary conditions. 

For any t the strains E<j*“) are evidently related to &*(l) by the Cauchy relat- 
.fli ionships Eij = l/2 (t&) + u;y,. 

Since Ui(‘) satisfy the homogeneous boundary conditions on S, , Ss, and s,, 
it follows from (1.10) that the functions r&*(l) satisfy these same conditions. 

Let us verify the creep law (1.2). Let us substitute the expression for QQ’ from 
(I. 6) into (1.9); taking into account that Eij” = 0, we obtain by taking (1.8) into 
account 

E$Q (x, z) = (1 -+ Y) (I + L) (q) - Ydij (I +. L) (~) 

This agrees with the frost equation in (1. Z), Q. E. D. 
Proof of Theorem 2. Let us verify that the functions bij*@‘L), Egj*@), 

I&*(*) satisfy equations (1. IL), (1.3, (I,. 4) of the creep problem in the case of zexo 

force effects. 
We substitute Q*(Z) (x, t) for arbitrary t and arbitrary X E 52 ft) into the 

equilibrium equations; we obtain 

The right side in (1.14) is zero on the basis of the definition of the elastically instant- 
aneous solution. 

Let us confirm compliance with the stress boundary conditions. On the moving 

contour y* (t) and the moving boundary S’, (t) 

.tp) (X, t) nj - Cd;” (X, t, y(t), 0 (t)) nj + 
( 1.15) 

x E y* (i), x E s, (t) 
The elastically ~t~~~eous solutions satisfy the conditions Oij@)(X, ‘6, Y (r), 

w (t))ni = 0, x E y* (t), x E SW (t), -c < t, hence, the right side in (1.15) 

is zero. Therefore, oij*(‘)(X, t)nj = 0, x E yf (t), x E S, (t) . The stress 
boundary conditions on S,, S3, S, are verified analogously. 

Let us confirm that the d~pl~emen~ u,*(s) satisfy the boundary conditions on 

part of the boundary S, ( the verfication of the displacement boundary conditions on 

S 3 , S, is performed analogously). 
Since ?.Q(~) (x, 7, y (t), 0 (t)) =: uf (X, 2) for X E s2 , we obtain from 

(1.13) that for x&S2 
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uf'"'(x,t)= Ui(x,t)-t_ \ U;(x,r)R(t,z)dr +i Ui(x,z)P(t,z)dz+ 
(1.16) 

% si 

This last equality follows from the identity 

\ R(t,z)q(z)dt+\ W~3rp(W~+ ” 
To % 

i P (2, z) fi R (c !J cp (E) dE] dz = 0 
-%I t 

(1.17) 

which results from (1.3) and is valid for any function cp (‘t) given for ‘60 < z < t, 
whereupon the sum of the integral terms in (1.16) is zero. 

The Cauchy equations are satisfied because Eij*(*) and @i*(*) are expressed in 
terms of ~~~(‘2) and u&2) , respectively, by means of the same integral operator. 

Let us confirm the creep law, i. e., we show that 

@(X, z) _= (1 + v)(I$- L)(q) -Y&j(I + L)(qq+ei;(s, z) (1-18) 

We invert the instantaneous elasticity law ( 1.6) in Problem 2 

Substituting f 1.19) into (1. ll), we obtain 

G;y) (x, 1) 

E (0 

V 

% (I+ Y) (1 _ ‘&) jr,” tx, t, y (q, 63 (t)) - &t (x3 91 -I- 

s le~~(X,2,Y(Z),O(a))--Ekk(X,2)1R(ttt)dt}+ 
To 



1210 L. P. Trapemikov and B, A. Shoikhet 

t 

& \ $‘(x, T, y(z), O(T)) R (t, T) dt - 
h 

t 
Y 

% (I + Y) (1 - Zv) s ’ $2 (x, z, y (T), O(T)) R (t, T) dt 
To 

If the law (1.18) holds, then substituting (1.20) into (1.18) (Z must first be replaced 
by t and E by T in (1.18)) should yield (1.12). Since 

K W (VP>> = M (K (rp)) = cp 

KC# z (I -k L)rp, Mql zz (I + N)q, 

then substituting the first two terms in the right side of (1.20) (the expressions in the 
braces) into (1.18) yields the expression 

8:;) (XT t, r (t)~ W(t)) - t!ij' (X7 t) 

Taking account of (1.19) and (1.6). the third and fourth terms in (1,20) yield terms 
of the form 

and the fifth and sixth terms yield 

- 1 cl;’ (x, T, Y(T), O(T)) R (t, T) dz - 
70 

\ P(~,~){:C.~:)(X,I,Y(~),~(~))R(T, &+r = 
to To 

1 

s F:) (x, T, y(z), O(T)) P (t, T) dx 
7.3 

The identity (1.17) was used in deriving the last expression. 
Summing the expressions obtained together with the term Eij’ (x, t) yields the 

right side of (1.12), Q. E. D. 

2. Now, let us examine the version in which the displacements ace given on the 
edges of the growing slit and the boundary of the cavity W (z> . In this case, the 

conditions 

U(X,T) = uqx,q, xEvS(t) ( 2.1) 

u (x, 7) = u (x, z), x ES, (q 
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should be satisfied in addition to (1.1) and (1.2). 
As before, we let Ui*y Eij*y Oij* denote the solution of the creep problem. 
We designate the Problem (1.11, (2.Q (1.2) with zero deformative effects the 

Problem la: ~~j* = 0 in 52, U = 0 in S,, 

U, = 0 on S3, U, = 0 on S*, U-’ = 0 on r”(r), U = 0 on S,(z) 

and we designate the Problem (1. l), (2.11, (1.2) for zero external forces as the 
Problem 2*. The solution of the elastically instantaneous Problem 1 corresponding to 

the Problem 1’ will be denoted by U$‘) (x, ‘Tc, Y (r), w(t)), ai, (8, Z, y (t), w(t)), 

oil(‘) (x, ‘6, Y (t) 0 (Q>. It should satisfy the Eqs. (1.1) and (1.6) for zero 

deformative effects ‘and the following conditions on the slit and the cavity boundary 

u(x,z) = 0, xtzv’(t); u(x,z) = 0, xESm(t) 

The solution of the elastically instantaneous Problem 2 corresponding to the Prob- 
lem 2* is denoted by r.@ (x, 7, y (T), 0 (T)), E@ (x, T, y (z), o f-c)), oi#2) ix, 

T, y (T), w (T)). It should satisfy Eqs. (1.11, (1.6) and (2.1) for zero external forc- 

es. 
As before, the representation (1.5) is evidently valid, 
Theorem 3. The solution of the Problem l* is representable as 

** ay (x, 1) = op (x, t, y(t),, 0 (t)) + E(t) j 
cy (x, T, y (t), o(t)) (2.2) 

33 (T) 
X 

0 

ro 

Ep (x, t) = ~~~)(x~~.,(t,, o(t))+ i&&T, ‘,‘(t)d~~(t))~~(~, T)dT (2.3) 

n;(i) (x, t> = UP (x, t, y(t), 0 (t)) + 5 (l) ho ut (x, z, y (t), OJ (r)) f’ (r, r> dr (2.4) 

Theorem 4, The solution of the Problem !F is representable as 

ts by (x, 7% y w, @ (T)) cry (x, t) = 0:;’ (x, t, y(t), w(t)) + E(f) j 
(2.5) 

E W 
R (t, z) dT 

&p(x,t) = e~~)(x,~,y(~},~(~)), (2.6) 

The proof of Theorems 3 and 4 is completely analogous to the proof of Theorems 
2 and 1, and is not presented here. 
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Remarks. 1”. In the case of fured slits and cavities (i. e, , for y (r) E y (1) 
= y (to), 0 (T) = 0 (t) = 0 (fl)) ( the representations ( 1.8) - (1.10) and (2.5), (2.6) 
evidently agree with the known representations following from the first and second 

theorems of Arutiunian [I -4 1. The representations (1.11) - (1.13) and (2.2) - 
(2.4) go over into the known representations following from the second and first theo- 
rems of Arutiunian El - 41. This latter follows from the identity (1.17) which cancels 
the integral terms in (I.@, (1.13) and (2.2) for the case of fixed slits and cavities. 

2”. For E (t) 3 E = con&, P (t, 15) z P (t - z), R (t, T) s R (t - 2) the 
results presented above go over into a dependence for a hereditary elastic of viscoelas- 
tic body with constant Poisson’s ratio. 

3’. Theorems 2 and 3 are the main result of the paper. The representations (1.11) 
-( 1.13) and (2.2) - (2.4) show that in these cases the Volterra principle [S] is invalid. 

Indeed, the formal application of the Volterra principle to the conditions of Theorem 

2 result in the dependences 

e;y (x, t) = sp (x, t, y (t), 0 (t)), rq2) fx, q = up’ (x3 ts Y @f¶ f.0 w 

which agrees with (1.11) - (1.13) only in the case of fixed slits and cavities. An 
analogous result is obtained for the conditions of Theorem 3. As regards the represent- 

ations (1.8) - (1.10) and (2.5), (2.6) (Theorems 1 and 4), they can be obtained by 
a formal application of the Volterra principle. And, conversely, the proof of the 
representations (1.8) - (1. IO) and (2.5), (2.6) can be considered as a proof of the 
applicability of the mentioned principle for the conditions of Theorems 1 and 4. Let 
us note that Theorems 1 and 4 have been formulated in [7] for a growing slit in an 

isotropic viscoelastic body (Theorem 1 under the additional assumption of simple- 
connectedneas of the domain considered). 

4: Theorems 1 - 4 allow expression of the asymptotic of the solution of the creep 

problem in the neighborhood of a quasistatic moving slit in terms of the known asymp- 
totics [8] of the solution of the elastic problem. 

5 : On the basis of known existence and uniqueness solutions of elasticity theory 
problems [Q -111, constructive representations of the solution of the creep problem in 
terms of the solution of the elasticity problems, obtained in the Theorems Cl - 4 1. 
permit proving the existence and uniqueness of the solution of the creep problem for 
bodies with developing slits and cavities. 
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